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An algorithm for determining the sequence of variational parameters in a variational 
approximation to a real-space renormalization group is developed. Using this procedure, the 
Kadanoff one-hypercubc approximation for the two-dimensional Ising model is investigated 
in some &tail. We conclude that the apparent succe.~s of this method is somewhat for- 
tuitous; a consistent and completely optimized treatment yielding considerably poorer 
estimates of the specific heat exponents. In addition, the variational parameter is found 
to he non-analytic at the fixed point. The nature of singularity agrees with the predictions 
of van Saarloos, van Leeuwen, and Pruiskcn. 

The Kadanoff [ 11 lower bound (or one hypcrcubc) approximation has been applied 
extensively to real-space renormalization groups for various systems with apparently 
considerable success [2-121. However, the reasons for this success are rather unclear 
and it is conceivable that it is simply fortuitous. One of the aims of this series of 
papers has been to obtain a better theoretical understanding of the Kadanolf approxi- 
mation and thereby to gauge the true significance of its applications. (See also [13, 141.) 

The essential feature of the Kadanof7 approximation is that it yields a lower bound 
on the free energy of the system of interest. Optimizing this bound determines the 
“best” renormalization group transformation from which the critical properties of 
the system can be evaluated by standard methods. (For reviews see [ 15-201.) 

Various general aspects of such variational approximations were discussed in 
Part I [21] of this series, where, in particular, we showed that the basic optimization 
problem is equivalent to a discrete-time optimal control problem. The techniques of 
modern control theory, such as dynamic programming or the Pontryagin maximum 
principle, can thus be applied to reformulate (and hopefully simplify) the optimization 
problem. This was done formally in Part 1. In this paper, we focus attention on the 
problem of mrmericalZy evaluating the optimal sequence of variational parameters. ln 
particular, we develop whai appears to be an uccurule, r#icicwt andpractkalalgorithm, 
which we call OPTVAR. The only comparative existing procedure, apart from a 
direct numerical search [2, 101, is that devised by den Nijs and Knops [22]. Few 
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details of this algorithm have been published. Afthough somewhat similar to OPTVAW 
it does appear to be less efficient and to become unstable as r:he complexity of the 
system increases. 

The paper is arranged as follows. In the next section, we briefly review the essentia! 
features of the renormalization group approach to statistical mechanics, and, in 
particular, the formulation of the variational principle. The basic result of the paper--- 
the algorithm for determining the optimal parameters in a variational approxi- 
mation-is derived in Section III and illustrated in Section IV for the KadanoK 
approximation to the square lattice Isin, 0 model. A concluding discussion and 
summary are given in Section V. 

II. VARIATIONAL APPROXIMATIONS TO RENORMALIZATTION GRoms 

Consider a system of N degrees of freedom (e.g., spins) (CJ> = (Go E S, i = i, Z,..., N) 
on a &dimensional lattice Q of lattice spacing a and interacting through ~a~~i~to~~a~ 
H{o). The set S of allowed values of each o’i may be discrete or continuous. We shah 
absorb a factor -,8 =-1 - 1 /kB 7 (kB being Boltzmann’s constant and Tthe temperature) 
into the definition of N. The partition function of the system is thus 

where Tr, denotes the sum (integral) over all configurations of the set {.D>. The direct 
evaluation of ZN , for any non-trivial Hamiltonian, is notoriously ditkult, particularly 
in the critical region where long-range correlations are present 

The renormalization group approach to statistical mechanics [15-201 attempts to 
bypass these difficulties by considering the effect of transformations which reduce cr 
i‘thin’9 the number of (correlated) degrees of freedom. Explicitly, we consider 
transformations of H of the form 

where the renormalized Handtoniarz H’ refers to a system of N’ = N/b” < i%r degrees 
of freedom (p} = (,ui ES, i = 1, 2 ,..., N’) on a Lattice .Q’ isomorphic to Q bu; of 
lattice spacing a’ = ba > a. The parameter b is the spatial resealing factor and 
exceeds unity. For future convenience, the term (-Ng) in H’, which is independent 
of {pj, has been explicity written out; the corresponding term in 11 having been set 
to zero by the choice of the energy scale, e.g., by demanding that Tr, E{c]. = 
Tr, N’(p) = 0. 

The choice of the generator T{p, cr} is essentially of mathematical convenience: the 
physical content of the theory being independent of T for “‘reasonable” choices. I7e 
require, however, that 
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so that 
eNgZN[H] = .&[H’] = Tr, exp[H’{pj]. (2.4) 

Consequently, the free energy per degree of freedom 

satisfies 

f[H] = - lim (N-l In Z), n+m (2.5) 

f[H] = g + b-WH’]. U-6) 

This result is the basis of a renormalization group calculation of free energies and 
other thermodynamic properties (see, e.g., [2, 9, 10, 231). 

The problem is, of course, the evaluation of (2.2). Since for T = 1, this reduces to 
evaluating the partition function, one cannot, in general expect to evaluate H’ exactly. 
However, experience has indicated that (2.2) is considerably less sensitive to approxi- 
mate procedures than the partition function itself. This is particularly so with regard 
to critical properties. On the other hand, the results of any approximate evaluation turn 
out to depend upon the specific choice of T. Kadanoff [l] suggested that this problem 
could be overcome by developing variational approximations, the optimization of 
which would yield a “best” approximate renormalization group transformation. 

In such an approximation, we allow T to depend upon a set of ND parameters p 
(which may be constrained) and seek an approximate evaluation of (2.2) which we 
write as 

(2.7) 

The “subtraction” d(o) is chosen (i) to allow the trace to be performed exactly and 
(ii) to ensure that the exact free energy f[H’J associated with Hamiltonian Ha is a 
definite bound on f[H]. To be specific, we assume a lower bound and thus f[Ha] 
satisfies, not (2.6), but the inequality 

(2.8) 

At this stage, it is convenient to change notation somewhat. Let H and Hi be 
parameterized by a jinite number (NC) of coupling constants (e.g., one-body fields, 
pair interactions, multiple-spin interactions etc.), which we write as vectors K and Ka 
respectively in a NC-dimensional space. The approximation (2.7) can then be realized 
as a non-linear recursion relation 

Ki, = WJ& PI, (2.9) 

on this space, while (2.8) becomes 

(2.10) 
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Equations (2.9) and (2.10) form the basis of a variational approximation to (X2), 
We shall require the following properties to hold: 

(i) R(K, 0) = 0 for all K, 

(ii) f(O) = gA(O, 0) + W(O) = ----In iD;s II3 

(iii) Let {pa}yZl be an arbitrary sequence of the 
variational parameters and define 

K-1 = ML, , P,) 

Kc = WI-, 3 Pi> 

‘,+i Pdf(K,) = tI (2.14a) 

and 

g@n-, 3 PA = Grid) as y1-+co. (2. I4b) 

These conditions are valid for the Kadanoff approximation and are probably necessary 
for physically sensible transformations. Condition (2.12) implies that the approxi- 
mation becomes exact at infinite temperature (I K i cc l/T). The Kadanoff approxi- 
mation is, in fact, also exact as T = 0 (1 K / + co) but we shall not require this to be 
true generally. 

Conditions (2.14) allow (2.10) to be iterated to give the explicit boundf,(K) defined. 
bY 

where the sequence {KS}& is generated by (2.13) with K, = K (given). Convergence 
of the sum is ensured by (2.14b). The optimization problem posed by (2.15) is inzme- 
diately seen to be equivalent to a discrete-time optimal control problem with an 
infinite planning horizon and a discount factor b+ < 1. Dynamic programming 
establishes [213 thatf,(K) satisfies the Bellman equation: 

J%(K) = mpax h(K, P) + W%R g.ns> 

The value (say p’) of p for which the maximum is attained gives the optimal choice 
of parameters as a “feedback control,” which we write as 

p+ = p’(K). (2.lTj 

The (numerical) determination of the function pi(K) is the aim of this paper. Two 
aspects should be noted. Firstly, the dimensionality {NC) of the coupling constant space 
(state space in control language) is reasonably large ranging from 3 to 15 for most 
examples. Thus the usual “curse of dimensionality” of dynamic programming 
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prevents a direct solution of (2.16) by simple iteration. Secondly, the evaluation of 
critical exponents (see Section IV) requires the gradient of p+(K) with respect to K. 
Thus any algorithm must yield p’(K) with sufficient accuracy to enable p+(K) to be 
numerically differentiated. This places an accuracy requirement on the calculation in 
excess of that usually demanded in most optimal control problems. 

III. DETERMINATION OF p+(K) 

3.1. Finite-Iteration Approximants 

From (2.15) and (2.16) we note that 

P+(K) = PI+ (3.1) 

where pl+ is the first optimal control in the open-loop policy (PI+, pZ+,..., pnt,...) 
originating from state K. [In this section we shall use the terminology (control, 
states, etc.) of control theory rather than that (variational parameters, coupling 
constants etc.) of statistical mechanics.] The computational problem, from this 
viewpoint, lies in the infinite planning time. This problem can be overcome by 
constructing a sequence of approximants tof*(K) which involve only a finite number 
of iterations but converge tof*(K) in the limit of an infinite process, 

Iterating (2.10) n times gives 

n-1 

where 

f(K) 3 c MKz , PZ+~) + .WKn), 
l-0 

2 = b-” < 1 

(3.2) 

(3.3) 

and we have dropped the subscript A on g, . As before, 

Kz = R&z-I 3 PJ (3.4) 

with K, = K (given). From (2.10) to (2.12), we have for any K 

f(K) > g(K, 0) + $(O) = g(K, 0) + zg(O, f’)/(l - z). (3.5) 

Using this result to eliminate f(KJ in (3.2) and optimizing the right-hand side over 
Pl 9 P2 3..-, pn yields 

n-1 
.f@) Z qL(K) = max 1)1,1)2,. . . ,a, z. z’g(Kz 3 PZ+J + z%(K, 5 0) + z”+~~(O)/. (3.6) 
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It is now fairly stragihtforward to show that Z/J%(K), n == I, 2,... form a monotone 
increasing sequence whose limit isf*(K). Explicitly, we can write 

Recalling (2.12) immediately reduces this to 

y construction (see (3.6)), &(K) ’ b is ounded above and thus the sequence (fin 
converges. However, in view of (2.14), 

which completes the proof. 

3.2. Eualtlatiorz of &(K) -Algorithm DAM 

We turn now to the problem of evaluating #n(K) for fixed 11. For convenience we 
denote the set of control parameters (pl , pr ,...~ pn} by P and define 

n-1 
J(P) = C z7dK, , P~+I) -k z”g(K, 9 0). 

I=0 

(3. LO) 

where the sequence (K,}y=, is generated by (3.4) using P. Clearly 

#n(K) = z"f(O) + my J(p). (2.; 1: 

The optimization involved in (3.11) can obviously be performed, in principle, 
directly by a multi-dimensional search procedure over the I? x ND dimensional space 
of the components of p1 , ps ?...? pn (e.g., by a Davidoil-Fletcher-Powell routine). This 
is certainly feasible for small n and was essentially the procedure used by 
Kadanoff et al. [2] and later by Katz and Gunton (101 in their application of the one- 
bypercube approximation to Ising models on the square and simple cubic lattices 
respectively. However, the approach is rather inefficient and, in fact, becomes in- 
feasible in the critical region, where, as we shall see, accurate results require large 
order approximants (~2 > 1). 
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Instead we apply the Pontryagin maximum principle (see [21] and references cited 
therein). Define 

with 

I& = 17(Kz-, , PZ , n,> = % . R(K,-I ,A) - g(Kz-, 9 PA (3.12) 

h an, 1-l = ZaBI_,’ x = --z G& 9 0) n aK, . 

Then at optimality 

WK;-, 3 PI +, A~+) 3 n&;-l 3 PZ 3 %+) 

(3.13) 

for sufficiently small variations of pr from p1 +; the variations satisfying any constraints 
on the controls. 

An algorithm (which we shall refer to as DMP) based on this result can be formu- 
lated as follows: 

(i) Let pfoJ = {p(O) p!” 1 , ,z ,...I p:‘} be an initial guess for the optimal control 
sequence. 

(ii) Iterate the state equations (3.4) forward from K, = K. 

(iii) Evaluate j(O) = J(p(O)). 
(iv) Iterate the co-state equations (3.13) backwards. 
(v) Holding K1-, and A, fixed at the values generated in steps (ii) and (iv) 

maximize IIL(K,_, , pz , A,) at each node I = 0, 1,2,..., n as a function of pr over the 
allowed control set. Denote these values by pb) . 

(vi) Form the new control sequence 

p(l)(s) = (1 - s) p(O) + SP( m , ) 

where s is chosen to maximize J(p(l)(s)). Denote this maximum value by J(l). 
(vii) If / J(l) - J(O) I < E, where E is a preassigned tolerance the routine 

terminates, otherwise the process is repeated with p(O) replaced by p(l). 

The ideas behind this approach were originally due to J. M. Blatt (unpublished) 
and used by him to successfully solve continuous-time Pontryagin equations. While 
we have no convergence proof for the algorithm, it has been implemented and 
successfully used [24,25] to evaluate t,&(K) and the associated optimal control 
sequence for the case of a three-component state vector K, a single control p, and 
IZ 5 25. l’t appears to be relatively stable; converging to the same optimal control given 
wide variations in the initial guess. It has also been successfully tested on an upper 
bound approximation [26], in which the controls are constrained and the optimal 
control lies on the boundary. The main weakness, for our purposes, is accuracy. 
Since the stopping criterion is on values of J, the accuracy of the optimal controls 
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(assuming, as is usually the case, an internal maximum) is only of order G9 and thus 
in practice of order 1O-“-1O-5 at best. This is insufficient for the subsequent physical 
analysis (see Section IV). 

3.3. DeterminatioPt of&(K) and p+(K)-Algorithm QPTVAR 

If we make the assumption that the controls are unbounded, which is: in fact, valid 
for the Kadanoff approximation, we can overcome the accuracy problem of algorithm 
DMP. The essential observation, which we prove in the Appendix? is that if P is 
unconstrained then 

‘Thus the optimal control sequence, 

P+ = (PI+, Pet,..,, P,‘; 

are the roots of the n x N, equations; 

1, 2,..., il. (3.15) 

(3, IS) 

L = 1, 2,..., iv, * (3.17) 

Since (recall (3.12)) IIT, is expressed in terms of known functions, whose derivatives 
can be calculated exactly, the left-hand sides of (3.17) can be evaluated as functions P 
to machine accuracy and the system of equations solved by an appropriate root- 
finding routine. In practice, we have used a standard Control Data CYBER package 
based on a generalized secant method [27]. This procedure is considerably quicker 
and more efficient than algorithm DMP, although not as stable-one needs a fairiy 
good guess to ensure convergence. However this is usually available (from DMP if 
necessary). 

Given the ability to accurately and efficiently determine &(K) for fixed jr, we now 
formulate algorithm OPTVAR for the evaluation of&(K) and P+(K): 

(i) Given K and an initial value of II, solve the 11 x N, equations (3.17) fog 

P t(Ii) = {p;(n), P;(H)r..., (3,:s) 

The function calls in the root-finding routine involve forward iterations of the state 
equations (3*4) for K, = K, backward iterations of the co-state equations (3.13) and 
the evaluation of the derivatives 

where CRlapp,” and t?g/8pcpla are known functions. 
(ii) Evaluate 
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(iii) Increment II to rz’ = rz + 6tz and repeat steps (i) and (ii). 
(iv) If either &j(K) - #,(K) < c1 and/or / p:‘“’ - p:‘“” ( < Ed, where Ed and 

Ed are preassigned tolerances, terminate otherwise repeat steps (iii) and (iv). 

In practice, tolerances Ed and ep of order lo-lo have been feasible and quite often 
both tolerances are met more-or-less simultaneously. Note that our earlier analysis 
established that the approximants #n(K) converged tof*(K). We do not have a similar 
proof that 

lim p:tn) = p?(K). a+rn 

Numerically, however, the extimates pi’“’ appear to become independent of n for 
y1 2 20. Given the discounting in (3.10) this is not surprising. 

IV. ISING MODEL ON THE SQUARE LATTICE 

4.1. The Kadanofs Approximation 

As an illustration of the use of OPTVAR, in this section, we apply it to the Kadanoff 
approximation for a real-space renormalization group transformation of the two- 
dimensional square lattice Ising model. (See also [2, 13, 14,281.) 

On the square lattice the Kadanoff approximation involves those interactions that 
can be embedded in a unit square of the lattice. For our present purposes, it suffices 
to consider only interactions involving an even number of spins. There are three such 
interactions: nearest (&) and next-nearest (K& neighbour pair interactions and a 
four spin interaction (KJ between the spins at the vertices of a square. These couplings 
define the state vectors K = (Kl , K2, K3). We write the initial Hamiltonian as 

where 0, , ag , u3 , CT~ are the spins at the vertices of any face and the sum is over all 
faces. In terms of the coupling constants K, h, is given by 

where 

h, = +!KlS, + K,&,, + K38 (4.2) 

s, = UlU2 + 0203 + u,u, + U,Ul , S2.d = UlU3 + u,u, 3 s, = u,u,u3u, , 

(4.3) 

The renormalization group of interest [I, 21 is illustrated in Fig. 1, where the 
renormalized spins (EL} are associated with the shaded faces. The spatial resealing 
factor is clearly b = 2, while the generator T{p, u} is defined by 

UP, 01 = 11 t(d. 
OL 

(4.4) 
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EjKG. 1. Square lattice illustrating the cell transformation used in the Kad~off a~~rQx~rn~ti~~* 
The renormalized spins are associated with the shaded cells. 

Here the product is over all shaded faces with 

with S,, = o, + CT~ + o8 + C~ . The parameter p will. be our variational 
and is unconstrained (- co < p < co). 

The renormalized Hamiltonian X{ ,u} is given by (2.2) where Tr, is the sum over the 
2w configuration of the set {CT} = {q = &l, i = 1,2,..., N). This sum is intract 
The Kadanoff approximation [l] effectively decouples this sum into a product of 
sums each over only four spins. The renormalized parameters K’ = (&I,’ , & , I%$) and 
the spin-independent term g are then determined from 

where Sk , Si,, and Si are defined by (4.3) with the O’S replace 

@CPlY Ed29 P3, P4) = c c c c 
ol=flo,=flo,-*lo,&l 

X exp P i aiPi 
i 

- In 2 coshpS, + 4h,(o, , Q , ~~ , 
i=l 

Explicitly 

G = t lnPY+ + + +>M+ - + --)I, (4&l) 

K; = BlnP(+-+-I @(++++)/@z(++--)l, (4.8b) 

Ki = hM@(+-+-) W++++) @2(++--)/@4(+++-)I, (4.8c) 
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and 
gc-K;- In @P(+ + + --I. (4.9) 

The sum in (4.7) can be evaluated in closed form. However, this is hardly necessary 
since (4.7) is very easy to compute numerically and all required derivatives with 
respect to p and K easily determined. For a proof that the approximate recursion 
relations (4.8) constitute a lower-bound approximation in the sense that f(K) and 
f(K’) satisfy (2.8), we refer to the papers of Kadanoff [l, 21. 

4.2. AppIication of OPTVAR 

As is typical of a renormalization group calculation, the space of coupling constants 
defined in the previous sub-section is larger than is physically relevant. The most 
significant sub-space is the line (Kl , 0, 0), in which the Hamiltonian (4.1) reduces to 
that of the standard Ising model, whose free energy was evaluated analytically by 
Onsager [29]. 

Figures 2 and 3 illustrate respectively the optimal lower bound approximation 
fL(K) = fA(K, 0,O) and the corresponding optimal parameter p+(K) = p+(K, 0,O) as 
a function of K for 0 < K 5 1.5. For comparison, we also show in Fig. 2 the exact 

0 

-1 

cs 
b 

5 

: I= -2 

-3 

-4 
0 1.0 15 

K 

-I 

FIG. 2. Comparison of the optimal lower bound f&T) computed in this paper with the exact 
free energy (broken curve) of the two-dimensional nearest-neighbour Ising model and the optimal 
upper bound &(K) computed in Ref. [26]. 
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FIG. 3. Optimal variational parameter p+(K) along the line (Kl = K, & = 0, K, = 0). 

Qnsager free energy and the upper bound derived by Barber [26] using an alternative 
renormalization group approximation. It is evident that both bounds become exact 
at both weak and strong coupling. To computef,(K) and p+(K), QPTVAR was r 
various points along the line (K, 0,O). Convergence at a tolerance of l0-e was accepte 
on either the free energy or the variational parameter provided both tolerances ha 
at least exceeded 1QP. Greater accuracy could be obtained for weak coupling tha 
for strong. The number of iterations required increased as K approached 0.48 and 
decreased after that; the maximum number being about 25. Some instability at stro 
coupling did occur, but this was more a result of inefficiencies in the routine [2?] us 
to solve the system of non-linear equations (3.17). This could undoubtedly be over- 
come by the use of a better procedure. 

In Fig. 4, we plot, as a function of the number of iterations, values of K1 along 
optimal trajectories starting at various initial points on the line (Kr , 0,O). (Note that 
non-zero values of K2 and K4 are generated by the transformation) The significance 
of the value 

K,,, c1 0.4786 

is apparent. For Kl -C Kl,c, the trajectories tend to the origin of parameter space, 
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FIG. 4. Value of nearest-neighbour coupling Kl along optimal trajectories starting from the 
point (4 = KY), Kz = 0, K, = 0). Note that non-zero values of other couplings are generated 
by the transformation on iteration. 

while for K1 > K,,, they approach the strong coupling regime (I K 1 --z a). For 
Kl = &c , the flow is to a tied point given by (see also Section 4.3) 

K,* N 0.317, K,* rv 0.108, K,* N -0.008. (4.11) 

In the next sub-section, we shall show that this fixed point describes a ferromagnetic 
critical point. Thus the value K,,, can be compared with the exact critical coupling 

K?’ = &ln(l + 2l/“) = 0.440687... . _ (4.12) 

of the Onsager solution. The agreement is reasonable. 

4.3. Fixed Point Behaviour 

We turn now to an investigation of the behaviour of the variational parameterp+(K) 
and hence the optimal recursion relations 

K’ = R(K,p+(K)) = 9(K) (4.13) 

in the vicinity of a fixed point. If p is unconstrained, the fixed points 

16;” = R(K*,p*), P” = P+@*>, (4.14) 
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of (4.13) can be determined [2, 14,211 without recourse to a full optimization. From 
(2.16), pt = p’(K) for any K is the solution of 

g,(K, P’) T’- zWR(K, P+)I - Rx@, a’) = 0 

ere the subscript p denotes a partial derivative with respect to p and 

(4.15) 

E(K) = 3x4/8K, 

is the gradient off,(K). This satisfies the recurrence relation 

(4.15) 

E(K) = d[K,p+(K)] + zE(B) . P’(K), (4.17; 

where 

d = @g/aK), , (4 18) 

and 

7-F = (aR./aK.). [r ?Q\ 
IJ 1 3 83 i, j = 1, 2,..., IV: . \ ?,i/J 

At a tixed point, K = d = K”, E can be eliminated between (4.15) and (4.17) 
to yield 

gy(K*, p*) + zd” ~ (1 - zT*)-1 . R,(K”, p*) = 0. (4.20) 

This equation, together with (4.14), form a set of NC + 1 equations for the NC 
components of K* and p* = p(K*). Equation (4.20) is equivalent to Kadanoff’s 
criterion and can obviously be generalized quite easily to more than one variational 
parameter. 

Since the system (4.14) and (4.20) is non-linear there may exist more than one 
solution. Indeed, this is the case for the Kadanoff approximation on the square lattice 
-the Kadanoff criterion yielding three optimal nontrivial fixed points [13,28]. Two 
of these points, together with the associated value of the variational parameter, are 
listed in Table I. A third point (at p* ‘v 0.741) does not appear to be physically 
relevant for the conventional Ising model [13]. 

TABLE I 
Fixed Points of Optimal Recursion Relations 

Point p* = p’(K*) Kf ii* K? 3 

s 0.765983 0.279434 0.139717 -0.006865 
A 0.760989 0.317442 0.107707 -0.007530 

The point alp* CY 0.766 is the one located originally by Kadanofi El]. This point is, 
however, only approached by trajectories in the symmetrk sub-space, K1 = 2&CZL 
On the other hand, the point at p * = 0.761 corresponds to the limit of the critical 
trajectory found in the previous sub-section. For this and other reasons discussed 
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shortly, we consider this point to be the physically relevant fixed point for the two- 
dimensional ferromagnetic Ising model. We shall denote these points in the following 
by S and A, respectively. 

With the appropriate fixed point located, the critical exponents follow [15-201 by 
linearizing the recursion relations about that fixed point. These exponents describe 
the critical behaviour of all systems on the critical surface of the particular fixed point. 
Explicitly, we require [15, 201 the eigenvalues of the matrix 

Tz = (aLBi/aKi)* = (iYRf/aIcj)f + (aRi/ap)~(~p+/aK~)*y (4.21) 

where the superscripts * indicate that the derivatives are evaluated at K = K*,p = p*. 
If we continue to consider only interactions involving an even number of spins then 
if K* is to describe a ferromagnetic critical point, T* should possess a single relevant 
eigenvalue /lT > 1. All other eigenvalues should be irrelevant with magnitude less 
than unity. The,maximum eigenvalue AT yields the specific heat exponent from 

fl, = bd,l(Z--a) (4.22) 

Thus for the two-dimensional Ising model (CX = 0) we expect 

A, = b = 2, (4.23) 

if the renormalization group has a resealing factor of two. 
Equation (4.21) shows that T” depends explicitly on the gradient of p+(K). Because 

of the computational problem involved in evaluating this, most of the applications 
[2-121 of variational approximations have followed Kadanoff [I] and neglected the 
second term in (4.20), diagonalizing only the matrix (a&/aK,)~ , For the two fixed 
points S and A, the eigenvalues of this matrix are given in Table II. The excellent 
agreement, particularly at the symmetric point (S), of the maximum eigenvalue with 
the expected value of 2 is typical of the apparent accuracy of the Kadanof-I approxi- 
mation. We also note that the point S appears to possess a second relevant eigenvalue 
PI. 

As acknowledged by Kadanoff [ 1,2] neglecting the gradient of p’(K) in (4.21) is 
inconsistent with the variational approach. Recently, van Saarsloo et al. [14] have 
shown how to calculate (++/aK)* without the full optimization that at first appears 
necessary. The calculation was, however, explicitly carried out only for the symmetric 

TABLE II 

Eigenvalues of Matrix (aRJa&)t 

Fixed point A Fixed point S 

2.0245 2.0012 

0.8871 1.1151 

0.4480 0.5056 
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TABLE III 

Gradient of p+(K) and Eigenvalues of (MJaKJ* at Optimal Fixed Points 

Point A Point s 
- 

(@+,‘aK)* Eigenvalues lE*.R$I (CJp+:‘aK)+ Eigenvahes iE”.K;i 
- 

4.7057 1.8833 5.1873 r.9210 
3.3557 0.8363 8.7 x lo-’ 2.5037 i.ll5b 5.0 :( lQ--” 

0.8741 0.4135 0.9378 0.4568 

point (S). We have repeated it at the point A with the results listed in Table 114. In both 
cases, there is a marked deterioration in the estimate of A, . 

The consistent estimate of A, is somewhat better at the point S than at A. Howeverj 
the symmetric point remains doubly unstable; the second relevant eigenvalue corre- 
sponding to perturbations which break the symmetry K, = X2 I The standard 
nearest neighbour Ising model can be put into the symmetric sub-space if the Kadanoff 
transformation (4.8) is prefaced with a decimation [l, .I?]. If this is done, the optima! 
critical trajectory flows [24] to the point S and yields an estmiate of I& cz 6.456 for 
the critical coupling. In addition, the resulting bound on the free energy is somewhar 
better. However, the procedure selects out the case of zero next-nearest neighbour 
interaction (&) from that of a finite value of rC, . Universality implies that finite 
ferromagnetic next-nearest neighbour interactions should not affect the critical 
behaviour. This view is supported by runs of OPTVAR from critical points on the 
line IC(l, q, Q-the critical trajectories flow to the point A. It therefore appears that 
the agreement of the S point is fortuitous; the physicaily relevant point being A. 

The analysis of van Saarsloo et al. [14] also led to a second and rather more serious 
conclusion: thefunctionp+(K) is non-analytic at afixedpoint. In the present formulation 
this can be seen quite easily. Recall (4.15) and note that by construction p) and 

,p) are analytic in all their arguments. However E is the gradient o uantity 
which is non-analytic at K* (and on the asscoiated critical surface). Thus (4.15) is 
consistent if and only if p+(K) is non-analytic at K*; unite 

E(K*) . RZ,(K*, p”) = 0. 

The values of this quantity at the fixed points A and S are aiso given in Tabie 1. 
While small, they are certainly not zero. The detailed nature of the siogularity in p+ 
follows from van Saarsloo et al. [14]: If uT denotes the eigenveclor of T* associated. 
with eigenvalue (1, then 

where 

p+(K + zuT) = p* + z(ap+/aK)* = uT + A i r-” Iw -i- O(F) 

w=l--a>l, 
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with a still related to L&- by (4.22). Thus a variational approximation gives a mgutitv 
specific heat exponent corresponding to a cusp rather than a divergence. Alternatively 
(see [14, 22]), p+(K) can have a discontinuity at K* , implying presumably a first order 
transition. This possibility, however, is not of relevance here. 

To test this prediction, we have used OPTVAR to calculate p+(K* + zuT) for 
various values of z from the s~)mmetric fixed point. (A similar analysis is possible for 
the other point.) In Fig. 5, the quantityp+ - p* - z(ap*/aK)* . uT is plotted against z 
on a log-log plot. The slope of the curve is 1.12, which agrees with the value of 
a = -0.1234 following from the value of fl, given in Table II. This is to our 
knowledge the first direct observation of the singular nature of pt. It is only feasible 
because of the efficiency of OPTVAR in the vicinity of a fixed point. 

FIG. 5. Log-log plot of #(z) = p+(K* - zur) - p* + z(8p+/sK)* . UT against z for deviations 
from the symmetric fixed point S along the direction ur specified by the eigenvector associated with 
the thermal eigenvalue, & . Here p* = 0.765983 and (ap+,‘aK)* * ur = 5.583602. 

V. CONCLUSION 

In this paper, we have described an algorithm-OPTVAR-to determine the 
sequence of variational parameters in a variational approximation to a renormalization 
group. Tests of this algorithm on the Kadanoff approximation for the two-dimensional 
Ising model showed that it was a relatively efficient and stable procedure, even in the 
vicinity of a fixed point. 

Unfortunately, the problems and weaknesses of fully optimized variational 
approximations as discussed by van Saarsloo et al. [14] appear to be very real. In 
particular, consistent estimates of the specific heat exponent OL are always negative. 
We have also been able to explicitly exhibit the singular nature of the variational 
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parameter p+(K) near a fixed point. As stressed by van Saarsloo et al. [i4]? this 
non-analyticity results in the optimal recursion relations (4.13) themselves becoming 
non-analytic functions of the coupling parameters. This is completely against the 
spirit of the renormalization group. 

These findings would appear to completely dash most of the early hopes held for 
variational approximations to renormalization groups. The original Kadanoff 
prescription in which the gradient of p+(K) at the fixed point is neglected remains 
apparently quite a successful approximation. There is however little justification for 
its success. Nevertheless, the method is relatively easy to implement and it should 
remain a useful procedure, if interpreted, like any other real-space approximation, 
with care. 

Fully optimized variational approximations to renormalization groups however 
do not appear to be worth the extra computational problems. They do yield quite 
good bounds on the free energy but this is usually not the quantity of direct physical 
interest. Since the free energy is quite generally a c0irz~e.X function of many physical 
fields, e.g., the temperature, it is conceivable that these bounds can be used, following 
Fisher [30] to yield upper and lower bounds on some of the derivatives of the exact 
free energy. This hope has recently been tested [31]; bounds for the interna; energy 
of the two-dimensional Ising model were calculated using Fisher’s results 1301 from 
the lower bound to the free energy calculated in this paper and the upper bound of 

Barber [26], IJnfortunately, the numerical accuracy of the bounds was rather poor. 
Finally, we remark that OPTVAR is similar to a parameter selection algorithm 

developed recently [32] for continuous time control problems. If the inherent problems 
of variational approximations to renormalization groups can be overcome-which in 
our opinion is unlikely-the incorporation of some of the techniques used in optimal 
parameter selection could be useful. 

APPENDIX 

This appendix presents a derivation of Eqs. (3.15) which underpin OPTVAR. These 
equations relate derivatives of J, defined by (3.10), to derivatives of the Pontryagin 
function 17, defined by (3.12). For notational convenience, we consider only a singie 
coritrol (variational parameter) at each stage of iteration 

Since ps effects only the last stage of iteration, differentiating (3.10) yields 

If we now make use of the recurrence relations (3.4) and &@e 
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(A.l) can be written as 

with Dn defined as in (3.12). 
Now consider 

aJ 
apn-l 

= 9-2 & (K,-, , pm-i) + P-’ & -2 
n n1 

+ Zn WL , 0) a2 
aK, ‘ap,’ 

Introducing (3.4) and (A.2) allows this to be rewritten as 

(A.4) 

This can again be simplified by use of the recurrence relations (3.4) to give 

aT7,-1 - z"-2 

aPn-1' 

Thus 

if 

aJ - -Zn-2 a17,-, 

3P’Pn-1 ah 

c4.6) 

64.7) 

(A.81 

But this is just the co-state equation of Pontryagin (3.13). 
The generalization to pw is now straightforward but somewhat tedious. From 

(3.10) 

(A.9) 
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Eliminating g’s in favour of 17’s yields 

Tf we now extend the definition (A.8) to 

iilT,,l 

AZ =zaK,” 
I = n - 1, ?l - 2,..., 2, I, 

the right-hand side of (A.IO), after some algebra, vanishes and thus establishes (3.15). 
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